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The Problem — Analysing Epithelial Hyperplasia

Quantifying = % of epithelial hyperplasia

Advantages:

 Multiple samples: ranking and comparing

* Single sample: background information that can support diagnosis
Disadvantages:

* Repetitive, time-consuming, costly process = worth the effort?

* Repeatability between individuals may be low.
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Project Aims

Develop a computer-assisted diagnosis (CAD) tool to automatically process Hematoxylin

and Eosin (H&E) stained whole-slide images (WSlIs) of gills.

e Support histopathologist with metrics ¢ Other characteristics
o severity (%) o 100% repeatability

o distribution (focal vs diffuse) o Not a “black box” tool

* Support histopathologist with target
areas to look at

o heatmap visualisations
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Histology Image Processing - Challenges

Large image size.

Lack of labelled data.

@® Varying colour and magnification.
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Image Tiling
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Image Tiling
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lling

Image T

1024 pixels

Divide WSl into regions of interest (ROls)
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Why stain normalisation?

e Stain intensity and colour can vary between WSiIs.
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WSI Analysis Framework
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How can we
make our
approach
aware of
context?
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Some machine learning concepts...

e Supervised learning uses labelled data to train algorithms to make predictions,
while unsupervised learning uses unlabelled data to uncover patterns or structures
within the data.

e So far, we have only used supervised learning. If we use unsupervised learning, we
can train a model to identify salient Regions of Interest (ROI).

* In other applications, this is known as anomaly detection.
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Reconstruction
models try to
compress, then
recreate 1mages.
By only training it
on lamellar
tissue, we make
the model learn
about gill tissue .
structure. Encoder Representation Decoder

Input
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[t the model 1s

then given an

image that it has

not %ee n trained input
to recognise, 1t

produces a worse
reconstruction.

Latent
Encoder Representation
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By comparing an
image to thgz
reconstruction,
we get a value
known as
Reconstruction
Loss.

Ccourences
B 0B F & W

Histogram of reconstruction loss values on evaluation set.
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(a) Original WSI

(b) Visualisation of Hyperplasia Analysis w/out Anomaly Detection



(a) Original WSI
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(b) Visualisation of Hyperplasia Analysis w/out Anomaly Detection

(c) Visualisation of Hyperplasia Analysis w/ Anomaly Detection
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How can we summarise this ﬁne—grained
analysis as a single score?

Does our analysis agree with expert opinion?
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| | Without Anomaly Detection

| With Anomaly Detection

| ResMNet18

| | EWT-LP | ResNet18 | EWT-LP

| Imagel D | Expert Label | Mean | Mode | Median | Mean | Mode | Median | Mean | Mode | Median | Mean | Mode | Median
1 2 2 2 2 2 |2 |2 2 2 2

i 3 2 2 2 . 2 2 2 2 2

3 1 3 3 3 2 2 2 . 3 3

4 0 2 2 2 2 |2 |2 1 2 1

5 1 2 3 2 2 2 2 2 3 2

& 1 2 2 2 2 2 2 2 . 2

! 2 2 3 3 F. | 3 2 2 3 F.

8 3 2 3 2 2 2 2 F F. 2

9 2 2 3 2 2 |2 |2 2 3 2

10 3 2 3 2 F 2 2 2 3 3

11 0 1 1 1 2 |2 |2 2 1 2

12 0 2 |2 |2 2 |2 |2 2 13 |3
13 1 2 2 2 2 2 2 2 2 2

14 3 2 3 2 2 2 2 1 2 2

15 1 2 3 2 i 2 2 ¥ ¥ i

16 2 2 2 2 2 | 2 ‘2 1 F 2

17 3 2 3 3 2 3 2 2 2 2

18 1 2 2 2 F 2 2 F 3 F

19 0 2 2 2 2 2 2 2
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Table showing predicted labels based on mean, mode, and median averaging. Colour

represents similarity to the expert label. Green: agreement between predicted and target.
Yellow: Off-by-one between predicted and target. Orange: Off-by-two between predicted

and target. Red: Off-by-three.



Final thoughts.

* There is significant scope for the application of advanced image processing
techniques for pathology and lesion-based analysis in aquatic animal data.

 We have created a prototype context-aware tool for analysing hyperplasia in Atlantic
Salmon gills WSIs that can assist histopathologists.

e Our context-aware approach and use of signal processing techniques means that the
system is not a “black box” and can be interrogated/tested thoroughly.

e Our comparison to expert scores demonstrates a gap for more fine-grained metrics
representing the severity and distribution of lesions.
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Any Questions?

a.f.carmichael@stir.ac.uk 'BE THE DIFFERENCE




